Description
I. Introduction and Charge
Hypertension is a major public health problem worldwide, affecting over 50 million individuals in the United States alone. It is a major risk factor for target organ damage resulting in coronary artery disease, heart failure, stroke, and kidney disease. Despite increased efforts to prevent, treat, and control hypertension and its sequelae, the prevalence of hypertension in the United States has not decreased. The pathogenesis of high blood pressure remains unclear, and consequently treatment is currently based on using drugs with an emphasis on reducing the elevated blood pressure rather than treating its causative factors.
A major goal of basic hypertension research is to identify the underlying biological pathways and mechanisms responsible for abnormalities in blood pressure control, related risk factors, co-morbidities, and susceptibility to target organ damage. Genetic studies over the past decade have demonstrated the enormous complexity involved in understanding the causes of high blood pressure. It has become clear that no single approach will answer the key questions related to the biological mechanisms underlying high blood pressure. Hence, interdisciplinary research models emphasizing all levels of inquiry, from the gene to the intact organism, are now required to yield the important and much needed data on the causes of high blood pressure and target organ damage.
A Working Group on Future Directions for Hypertension Research was convened on May 24-25, 2004 to assist the National Heart, Lung, and Blood Institute in identifying and prioritizing basic biomedical research goals, which could include animal and human studies, in the areas of normal blood pressure control, hypertension mechanisms, and approaches to understand and prevent target organ damage. Clinical trials and epidemiological observational studies were not encompassed within the charge to the working group. Working group members were encouraged to identify research areas that through Institute-initiated activities could provide over the next decade a significant stimulus for research on the pathogenesis and treatment of high blood pressure and on susceptibility to target organ damage.